首页> 外文OA文献 >Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow
【2h】

Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

机译:高超声速流动中的三维气动弹性和气动热弹性行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.
机译:研究了高超声速流动状态下三维构型的气动弹性和气动弹性行为。使用三阶活塞理论,欧拉(Euler)和纳维尔·斯托克斯(Navier-Stokes)空气动力学研究了低纵横比机翼的气动弹性行为,该机翼代表通用超音速飞行器上的鳍或控制面。还检查了使用Euler和Navier-Stokes空气动力学产生的气动弹性行为对控制时间精度的参数的敏感性。同样,使用CFD产生的空气动力学加热结合了流体和结构之间的热传递的改进的空气热弹性模型,用于检查高超声速状态下低纵横比机翼的空气热弹性行为。最后,使用活塞理论和欧拉空气动力学研究了具有举升式机身和倾斜鳍片的通用高超音速飞行器在高空范围内小于或等于M的2.5范围内的高超音速气动弹性行为。从10,000英尺到80,000英尺。该分析包括对与Euler空气动力学一起使用的最佳网格选择的研究。除了给出的气动弹性和气动弹性结果之外,还比较了三种时域颤动识别技术,即移动块法,最小二乘曲线拟合法和使用气动弹性系统自回归模型的系统识别技术。通常,这三种方法很吻合。然而,系统识别技术以最小的响应记录长度提供了快速的阻尼和频率估计,因此大大降低了计算成本。在当前情况下,计算成本降低了75%。给出的气动和气动弹性结果表明,CFL3D代码适用于高超音速飞行状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号